

C.1.4 / (FASE 2)

AUDITORIA ENERGÉTICA EN EDIFICIOS Y SUMINISTROS MUNICIPALES

En La Cañada de Verich a 22 de Julio de 2018,

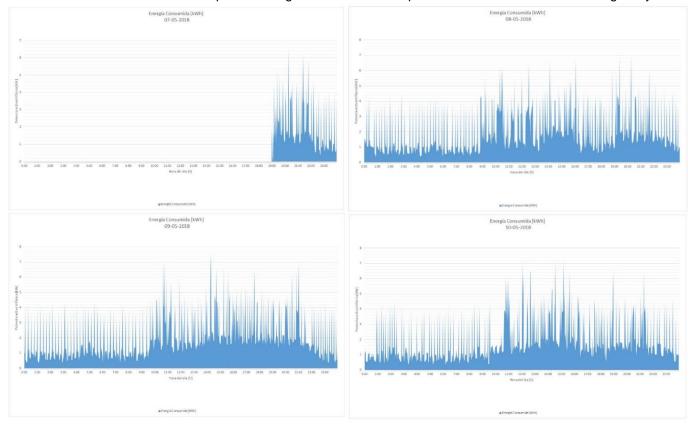
Fdo. Andrea Lacueva Laborda.- Ingeniera técnica mecánica NºCOLEGIADA: 9187

ANEXO: AUDITORÍA ENERGÉTICA – FASE II 22 DE JULIO DE 2018

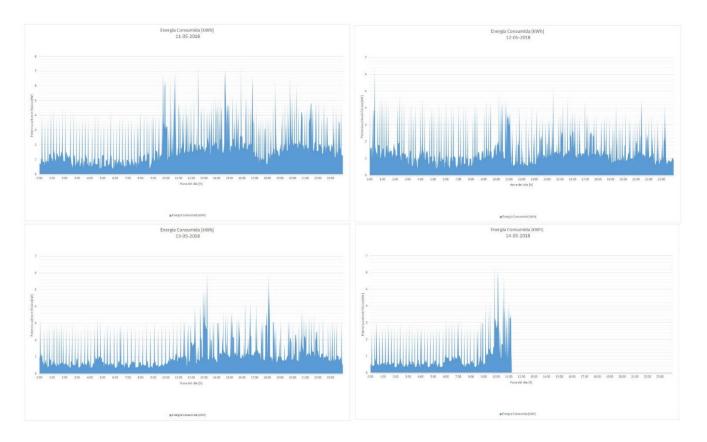
Contenido

1	INV	ENT	ARIO DE SUMINISTROS	3
			AR CONTADORES E INSTALACIÓN ELÉCTRICA EN EL BAR DE LA VERICH	4
2	2.1	OBS	SERVACIONES	6
3	ALU	JMBF	RADO PÚBLICO	8
3	3.1	COI	NSUMO ENERGETICO EDIFICIOS MUNICIPALES	13
3	3.2	COI	NSUMO ENERGÉTICO ALUMBRADO PUBLICO	13
3	3.3	RES	SUMEN SITUACIÓN ACTUAL	13
3	3.4	PRO	DPUESTA DE MEJORA	14
	3.4.	1	INVERSIONES DE AHORRO	15
	3.4.	2	BOMBEO SOLAR	16
4	CO	NCL	JSIONES	17

1 INVENTARIO DE SUMINISTROS


CONSULTA	CUPS	DIRECCIÓN/USO	P _{contratada} 2018	CONSUMOS	COSTE
AYTO DE LA CAÑADA	ES0189000023010109WP0F	/HORNO-CASA ALQUILADA	9,2 kW	3.916kWh	1.569€
PLAZA LA IGLESIA	ES0189000023010126AW0F	PLAZA LA IGLESIA	3,45 kW	532kWh	202,02€
REPETIDOR TV	ES0189000023010129AM0F	/REPETIDOR TV	5,75 kW	4.137kWh	1.684,25€
PREVISORES PORVENIR	ES0189000023010135AB0F	PREVISORES PORVENIR/TIENDA	5,75 kW	9.855kWh	2.028€
TELECLUB	ES0189000023020010HL0F	/BAR-TELECLUB	9,959 kW	7.695kWh	1.852€
OFICINAS	ES0189000023020012HK0F	/OFICINAS	13,856 kW	9.665kWh	1.965€
PARTIDA FUENTE	ES0189000023020014LT0F	PARTIDA FUENTE/PISCINAS	13,943 kW	13.870kWh	1.883,16€
SOLANA	ES0189000023020015LR0F	SOLANA/ELEVACIÓN PEQUEÑA	9,526 kW	7.180kWh	1.632,45€
EXTRAMUROS	ES0189100000017315YZ0F	EXTRAMUROS/MOLINO CENTRO MEDICO	13,856 kW	7.420kWh	1534,68€
SONDEO	ES0189100000018304AZ0F	SONDEO/DEPÓSITOS	10,392kW	2.569kWh	1.326€
ALUMBRADO PUBLICO	ES0189000023030001QM0F	ALUMBRADO PUBLICO	13,66 kW	32.850kWh	5.210,16€
ESCUELAS	ES0189000023210025TP0F	ESCUELAS	6,9 kW	32kWh	378,36€
ELEVACION DE AGUAS	ES0189000023020014LT0F	ELEVACION DE AGUAS	13,856 kW	6.376kWh	1.535,88€
VIVIENDA MAESTRO	ES0189000023010023KZ0F	VIVIENDA MAESTRO	2,2kW	51kWh	127,32€
ELEVACIÓN	ES0189000023220013CZ0F	EXTERIORES / ELEVACIÓN	13,856kW	7.647kWh	1.680€

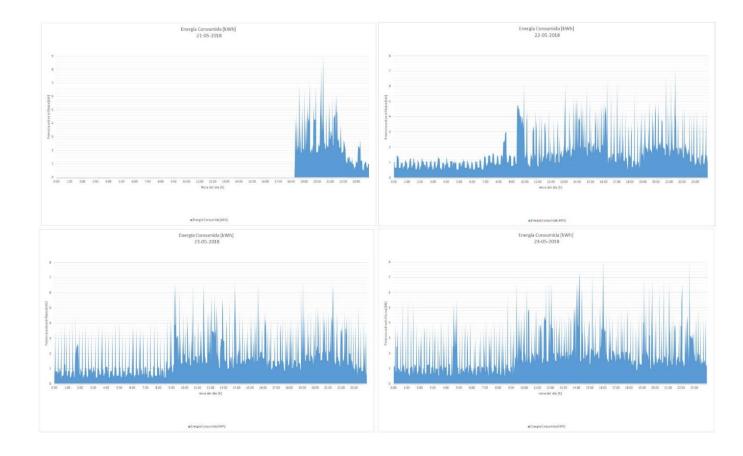
2 ANALIZAR CONTADORES E INSTALACIÓN ELÉCTRICA EN EL BAR DE LA CAÑADA DE VERICH

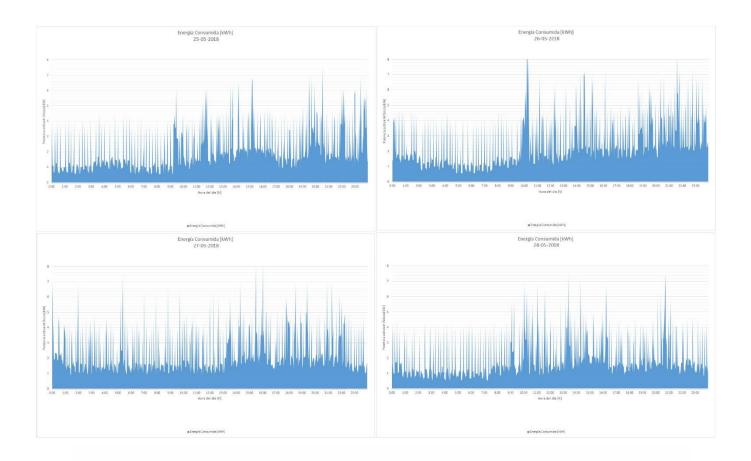

El Ayuntamiento de La Cañada de Verich se puso en contacto con Andrea Lacueva Laborda porque creían que había un consumo eléctrico elevado en el bar, unos días después se visitó el bar para estudiar cómo solucionar el problema.

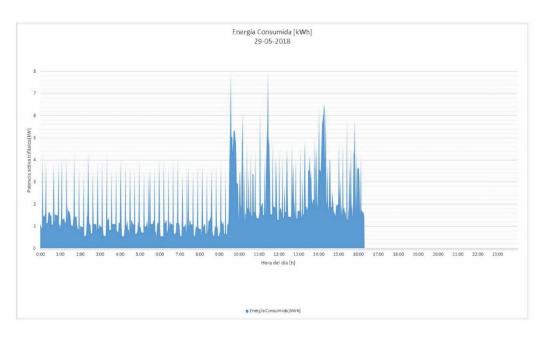
El día 07-05-18 Jorge Niella instalo un analizador de redes en dicha instalación para detectar alguna anomalía en algún aparato eléctrico o fuga en la red.

El día 14-05-18 se pasó a recoger dicho analizador para su estudio con los datos recogidos y

se llegó a la conclusión que se tendría que volver a instalar porque sí que había un consumo alto por la noche en picos de 4kw cada 15 minutos constantes más o menos (fotos adjuntas).


El día 21-05-18 Jorge Niella instalo de nuevo el analizador de redes en dicha instalación para encontrar el problema en colaboración con los que llevan el bar apuntando en una lista (foto adjunta) día y hora de encendidos y apagados en todos los aparatos eléctricos en dicho bar.


FECHA	HORA	ACCIÓN
21/5/2018	21:30	DESCONECTAR CAFETERA
22/5/2018	9:20	ENCENDIDO CAFETERA
22/05/2018	9:52	DESCONECTO LAVAPLATOS
23/05/2018	9:50	CONECTO LAVAPLATOS
22/05/2018	9:52	DESCONECTANDO DIFERENCIAL DESCONECTAN
		BOTELLERO MÁS PRÓXIMO AL LAVAPLATOS
23/05/2018	9:50	DESCONECTANDO DIFERENCIAL DESCONECTAN
		BOTELLERO MÁS PRÓXIMO AL LAVAPLATOS
23/05/2018	22:09	APAGAR LA HIELO
24/05/2018	9:15	ESCUCHAR CUBITERA
24/05/2018	9:15	DESENCHUFAR BOTELLERO DE LA BARRA
25/05/2018	9:15	ENCHUFAR BOTELLERO DE LA BARRA
26/05/2018	12:45	DESENCHUFAR BOTELLERO 2
26/05/2018	09:30	ENCHUFAR BOTELLERO 2


El día 29-05-18 se pasó a recoger el analizador para su estudio con los datos recogidos (fotos adjuntas mas abajo). Sincronizando con la lista anterior se llegó a la conclusión de que era la cafetera. Siendo casi normal el consumo y picos en cafeteras de ese estilo y antiguas por tener que calentar el agua para tenerla disponible en cualquier momento. Dicho esto se les informa al ayuntamiento el motivo de ese consumo y se le propone instalar un temporizador analógico o digital para apagar la cafetera por las noche y encenderla una hora antes de abrir el bar todos los días, en importante saber que con toda la información anteriormente dicha que el ahorro económico mensual es casi imperceptible unos 0.09 € al día de ahorro y unos 2.7 € de ahorro al mes por el motivo de que la cafetera necesitaría más o menos 50 minutos en calentar el agua totalmente con el temporizador y sin instalar el temporizador la cafetera se enciende más o menos 2 minutos cada 15 minutos o lo que es lo mismo se enciende unos 64 minutos durante la noche y con el temporizador estaría unos 50 minutos.

2.1 OBSERVACIONES.

Es conveniente que los aparatos que se instalen, iluminación, etc. a partir de ahora sean de bajo consumo para intentar reducir potencia demandad y pode bajar la potencia a una tarifa 2.0DHA con 6,928Kw SOBRADAMENTE será un suministro con una tarifa más económica, cuando los aparatos e iluminación pueda estar con esa potencia contratada el ahorro será importante.

En La Cañada de Verich, a 22 de Julio de 2018,

Firmado:

Andrea Lacueva Laborda.-Ingeniera técnica mecánica. NºCOL:9187

3 ALUMBRADO PÚBLICO.

Centros de mando

Las instalaciones de Alumbrado público están compuestas por A continuación se indican los centros de mando incluidos en el estudio: (TABLAS DE ALUMBRADO PÚBLICO)

TABLA 2. SITUACIÓN Y CARACTERISTICAS BASICAS DEL SECTOR

	TABLA 2. SITUACION Y CARACTERISTICAS BASICAS DEL SECTOR							
	DATOS GENERALES DEL CUADRO							
LOCALIDAD	CAÑADA DE VERIC	Н			PROVINCIA	TERUEL		
Nº CO	NTRATO							
С	UPS	ES018900002303000	1QM0F					
Nº CO	NTADOR	2177339-23030001						
		ELEMENTOS COR	RECTORES ENE	RGIA REAC	CTIVA			
CONDENSADO	RES FIJOS			NO				
CABECERA CONDENSADO CONTACTOR	RES FIJOS +			NO				
BATERÍA AUTO	DMÁTICA		NO					
COMPENSACIÓ LUZ	N PUNTOS DE		SI					
		•						
		CARACTERISTICAS O	CONTROL Y REG	ULACION C	CUADRO			
			CELULA FOTO	DELECTRICA	A X			
CICTEN	MA DE CONTROL DE	FNOENDIDO	RELOJ					
SISTEN	MA DE CONTROL DE	ENCENDIDO	PROGRAMA ASTRONÓMICO					
		OTROS						
	MANIOBE		SI		SI			
	SISTEMA DE REG				<u>SI</u>			
	S.STEWA DE REG			1	NO			

Los centros de mando de alumbrado público son antiguos y necesitarían modernización y en algunos casos adaptación para el cumplimiento de REBT vigente.

Detalle del cuadro principal de distribución del centro de mando. Y luminarias. <u>Tipo de lámparas y luminarias</u>

Las luminarias empleadas son generalmente: Báculos, farol tipo villa en columna, según se indica en las siguientes fotos.

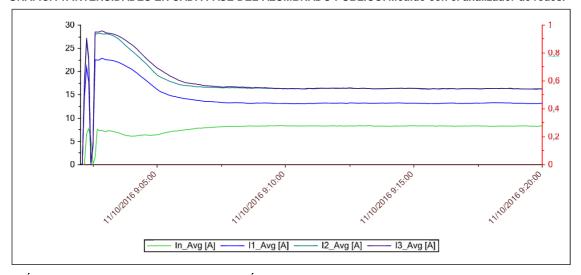
TABLA 3. IMÁGENES LUMINARIAS Y CUADRO DE MANDO.

lmagen	Descripción
	Imagen 1. Luminaria villa.
	Imagen 2. Luminaria báculo.

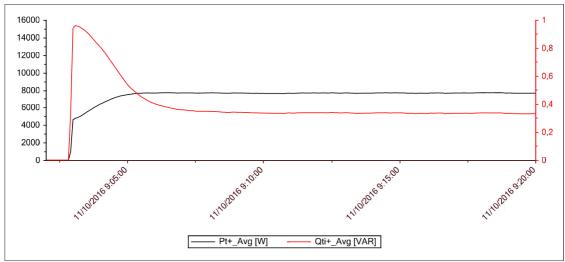
Imagen 3. Regulador de flujo.

Imagen 4. Cuadro de mando.

TABLA 4. TOPOGRAFIA E INVENTARIO DE LOS ELEMENTOS DE ALUMBRADO EXTERIOR DE LAS VIAS


		Nº PUNTOS	ANCHUR	A (m)	INTER-	ALTURA	DISPOSICION	TIPO	TIPO	POTENCIA
CALLE	TIPO DE VIA	DE LUZ	CALZADA (m)	ACERA (m)	DISTANCIA (m)	PUNTOS DE LUZ (m)	LUMINARIAS	LUMINARIA	LAMPARA (W)	SISTEMA (W)
JARDIN	CALLE	2	9	-	15	4,5	PARED	VILLA	MERCURIO	125
PLAZA DE LA IGLESIA	CARRETERA	6	13	-	10	4,5	PARED	VILLA	MERCURIO	125
PLAZA MAYOR	CALLE	1	6	-	-	5	PARED	VILLA	MERCURIO	125
MEDIO	CALLE	3	3,8	-	15	4,5	PARED	VILLA	MERCURIO	125
PLAZA DE LA FUENTE	CARRETERA	4	30	-	10	5	PARED	VILLA	MERCURIO	125
BAJA	CALLE	13	3,9	-	15	5	PARED	VILLA	MERCURIO	125
BAJA	CALLE	1	4,5	-	=	5	PARED	CAZOLETA	MERCURIO	125
PREVISIONES	CALLE	12	4,9	-	16	5	PARED	VILLA	MERCURIO	125
PREVISIONES	CALLE	1	4,9	-	=	4	PARED	CAZOLETA	MERCURIO	125
CASTILLO	CALLE	4	5	-	15	4	PARED	CAZOLETA	MERCURIO	125
CASTILLO	CALLE	3	5	-	15	4	PARED	VILLA	MERCURIO	125
CARRETERA	CARRETERA	8	6	0,7	27	7	PARED	CAZOLETA	MERCURIO	125
CARRETERA	CARRETERA	2	6	0,7	27	7	SUELO	CAZOLETA	MERCURIO	250
CARRETERA	CARRETERA	2	6	0,7	27	7	PARED	CAZOLETA	MERCURIO	125
HUERTOS		5			17	5	PARED	CAZOLETA	MERCURIO	125
	TOTAL	67								8,625kW

Debido a que se hace un encendido escalonado la potencia instalada y de arranque se reduce.


TABLA 5. MEDIDAS ELÉCTRICAS

MEDIDAS ELECTRICAS					
	FASE R	2,193 kW			
POTENCIA (Kw) Sin reducción de flujo	FASE S	2,691 kW			
	FASE T	2,754 kW			
	FASE R	13,1 A			
POTENCIA (A) Sin reducción de flujo	FASE S	16,1 A			
	FASE T	16,2 A			
	FASE R	201,9 V			
POTENCIA (V) Sin reducción de flujo	FASE S	205,5 V			
	FASE T	206,7 V			
	FASE R	0,85			
POTENCIA (φ) Sin reducción de flujo	FASE S	0,83			
	FASE T	0,84			

GRÁFICA 1. INTENSIDADES EN CADA FASE DEL ALUMBRADO PÚBLICO. Medido con el analizador de redes.

GRÁFICA 2. POTENCIA TOTAL ALUMBRADO PÚBLICO. Medido con el analizador de redes.

El estado de conservación es aceptable en la mayoría de los casos, si bien es verdad que en determinadas ocasiones presentas deficiencias, lo que puede incrementar las deficiencias lumínicas.

Las lámparas de VSAP producen un flujo luminoso de 14500lm (150W), con lo que su eficiencia energética es muy superior a las lámparas de VMCC. Presentan una tonalidad amarilla clara, con una reproducción cromática de peor calidad, su vida útil puede alcanzar los 4 años, y no reducen flujo, con lo que se detectan apagadas cuando se han agotado. Es el tipo de lámpara más indicado para el alumbrado viario. Aunque la propuesta de futuro es la instalación de bloques ópticos adaptadas a la luminaria villa o báculos, pasando de 125W de Vapor de mercurio a 38W y a 26W en led.

Puntos críticos:

Se emplean lámparas de VM, en gran parte los centros de mando, se presentan una relación de consumo Energético/ Rendimiento lumínimo NO óptima, dado además el coste de funcionamiento.

3.1 CONSUMO ENERGETICO EDIFICIOS MUNICIPALES.

Las tablas a continuación muestran los consumos por tipo de energía así como las previsiones de gasto para el año 2018.

TABLA 7. CONSUMOS EDIFICIOS MUNICIPALES

	Edificios municipales y elevaciones						
	Electricidad						
	Consumo (kWh)	Coste (€)					
Electricidad	80.945	19.398,12€					

En estos edificios los consumos energéticos son de electricidad para alumbrado y enchufes (tomas de corriente), más el consumo de calefacción y/o aire acondicionado. Estos últimos consumos pueden verse en el cuadro adjunto:

El consumo eléctrico de los edificios es muy difuso. Existen pocos edificios en los que hay consumo eléctrico muy relevante, con muchas horas de funcionamiento al año, haciendo posibles inversiones de mejora de eficiencia energética con un tiempo de retorno pequeño.

El ayuntamiento de ¡Error! No se encuentra el origen de la referencia. tienen un contrato de mercado libre con (electra energía), por lo que las tarifas eléctricas son coherentes respecto a los precios de mercado.

Se observa que en algunos edificios no hay consumo debido a que no tienen uso, o falta de lectura por la compañía eléctrica durante años.

Para reducir el gasto económico sin ninguna inversión, se podría actuar sobre tres factores:

- Se aprecia que en algunos edificios la potencia contratada no es la adecuada respecto al consumo del centro, optimizando potencias contratadas, se podría conseguir un ahorro económico.
- En algunos centros hay consumo de energía reactiva por falta de equipos de compensación, lo que ocasiona un mayor gasto para el municipio.
- El ayuntamiento ¡Error! No se encuentra el origen de la referencia. podría dar de baja los contratos eléctricos de los edificios que en la actualidad no tienen uso.

3.2 CONSUMO ENERGÉTICO ALUMBRADO PUBLICO

En los cuadros adjuntos se presentan los gastos derivados del alumbrado público en la situación actual en global y por centros de mando.

TABLA 11. SITUACIÓN ACTUAL – PRESUPUESTO AYUNTAMIENTO 2016 – COSTE ANUAL CON IVA

Alumbrado Público				
	Consumo	Coste		
Electricidad	32.850kWh	5.210,16€		

Debido a que el alumbrado público es el suministro de mayor coste municipal, suponiendo el 21% del gasto corriente del municipio, por un lado el alumbrado público con coste entorno a 400-500€ al mes, debido a que se encuentra en una tarifa 2.1DHA entre 10 y 15Kw con precios de la energía más caros que en tarifas 2.0DHA menor de 10Kw contratados y 3.0A más de 15Kw contratados.

3.3 RESUMEN SITUACIÓN ACTUAL.

La tabla a continuación resume la situación actual del Ayuntamiento:

TABLA 14. <u>SITUACIÓN ACTUAL – PRESUPUESTO AYUNTAMIENTO</u> ¡Error! No se encuentra el origen de la referencia. — COSTES ANUALES CON IVA

SITUACIÓN ACTUAL

	Alumbrado Público			
	Consumo	Coste Total		
Electricidad	32.850kWh	5.210,16€		
	Total Alumbrado Público	5.210,16€		

	COSTE ANUAL TOTAL
TOTAL EDIFICIOS MUNICIPALES Y ALUMBRADO PÚBLICO	24.608,28€

3.4 PROPUESTA DE MEJORA.

Una vez realizando el estudio de las instalaciones técnicas, la principal conclusión que se obtiene es que el Ayuntamiento de ¡Error! No se encuentra el origen de la referencia. tiene un importante potencial de ahorro de energía y tiene que invertir para mejorar el estado de sus instalaciones para conseguir un nivel óptimo de servicio a los ciudadanos.

Alcanzar un nivel óptimo de consumo de energía implica actuar en todas las fases de la cadena energética, equipos eficientes, uso adecuado de los equipos, suministro de calidad y conservación de las instalaciones.

Gestión energética y Mantenimiento.

Se propone, apoyándose en la directiva 2006/32/CE del Parlamento Europeo sobre la eficiencia del uso final de la energía y los servicios energéticos.

- 1.- **Gestión energética.** La gestión de suministro de combustibles y electricidad, incluyendo el control de calidad, cantidad y uso.
 - Aprovisionamiento de energía.
 - ♣ Pago de las facturas de energía eléctrica y combustibles.
 - Gestión de contratos con las empresas distribuidoras de energía.
 - Compromiso de 'confort'.
 - Compromiso del uso indispensable de energía.
- 2.- **Mantenimiento.** El mantenimiento de las instalaciones para lograr la permanencia en el tiempo del rendimiento óptimo.
 - Asistencia Técnica y/o Conducción de las instalaciones.
 - Servicios 24h.
 - Mantenimiento preventivo sistemático.
 - Mantenimiento preventivo condicional y correctivo.
 - Suministro y gestión de productos consumibles.
 - Asistencia Técnica para los controles Reglamentarios.
- 3.- **Garantía Total.** Una garantía total de reparación con sustitución de todos los elementos deteriorados en las instalaciones.
- 4.- Inversiones en renovaciones y obras de mejora obligatorias. La realización de obras de mejora y renovación de las instalaciones que se consideran obligatorias para poder dar los servicios descritos antes en condiciones de confort y seguridad optímales o realización de obras adecuación a la normativa.
- 5.- Inversiones en obras de mejora de la Eficiencia Energética. Además de las prestaciones enumeradas, con este modelo se pretende promover la Eficiencia energética mediante la incorporación de equipos e instalaciones que fomenten el ahorro de energía, la eficiencia energética y la utilización de energías renovables.

3.4.1 INVERSIONES DE AHORRO

Para mejorar la eficiencia energética de las instalaciones de Alumbrado Público, se recomiendan las siguientes inversiones:

Las luminarias del municipio son tipo villa y de báculo como se indica en las imágenes inferiores.

OPCIÓN 1:

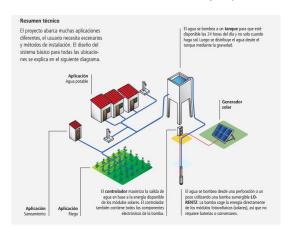
	Lámpara Situación	Lámpara Situación	Ahorro en
	actual	futura	consumo
Tipo	VM	LED	
Potencia nominal	125W	38W	
Potencia	139W	38W	65%
consumida			

OPCIÓN 2:

	Lámpara Situación actual	Lámpara Situación futura	Ahorro en consumo
Tipo	VM	LED	
Potencia nominal	125W	26W	
Potencia consumida	139W	26W	70%

Número de luminarias	Consumo Actual	Consumo futuro
67	32.850kWh	9360kWh
Ahorro	Coste Actual	Coste Futuro
3.993,36€/Año	5.210,16€/año	1.216,80€
Inversión: 23.200€	Amortización: 6 Años	Vida útil: 15 Años

En las siguientes tablas se muestra porque no cumple la luminaria de vapor de mercurio de 125W.


Lámpara		Potencia	Flujo	Eficiencia Iuminosa	¿Cumple?
Vapor Mercurio	de	125 W	6.200 Lm	50 Lm/W	NO
V.S.A.P.	58	70 W	6.600 Lm	94 Lm/W	SI

Se sustituye	Por	Ahorro por lámpara y año
250 VM	150 VSAP	366 kWh
125 VM	70 VSAP	203 kWh
80 VM	70 VSAP	30 kWh
125 VM	100 VSAP	85 kWh
80 VM	50 VSAP	111 kWh

3.4.2 BOMBEO SOLAR.

La implementación de una bomba solar directa con paneles solares, se propone y se profundizará en una memoria adicional estudiando con mayor profundidad esta medida.

Medida	Ahorro consumo/Año	Inversión	Ahorro coste	Amortización
Implementar con bomba solar directa	6.376kWh	15.000€	1.535,88€/Año	10 años

Las bombas solares directas utilizan motores sin escobillas de CC muy fiables que ofrecen una eficacia de más del 90%. La elevada eficacia supone menos módulos solares y la elevada fiabilidad supone la reducción de costes a largo plazo para el propietario. Al adoptar una

filosofía de diseño modular que separa los componentes electrónicos del motor, las bombas solares LORENTZ son muy fiables, ya que no hay componentes electrónicos por debajo de la tierra. El diseño modular también permite la sustitución económica de piezas si se produjese algún fallo durante la larga vida del sistema LORENTZ. LORENTZ ofrece una amplia gama de soluciones solares de bombeo de agua para diferentes aplicaciones.

En este suministro se ha detectado que a pesar de que posee la tarifa discriminación horaria el consumo es muy elevado en periodo punta cuando la energía es más cara. Debido al consumo existente es interesante trasladar el consumo a periodo valle.

Se debe instalar un reloj horario o boyas regulables para evitar el consumo en periodo punta, que encarece la factura de la luz como se muestra en la siguiente tabla. Con un coste de 40€.

4 CONCLUSIONES

En primer lugar, se propone en el bar/multiusos la desconexión de la cafetera y medidas de ahorro energético, el suministro de alumbrado se propone la sustitución de las luminarias actuales de Vapor de mercurio descatalogadas a led, podemos obtener un ahorro anual de 3.993,36€/Año, y en el bombeo del agua se propone evitar el consumo en periodo punta a través de un reloj horario, y se estudia instalar bombeo solar.